Сочинения. Доклады. Рефераты. Краткие содержания

Сочинения. Доклады. Рефераты. Краткие содержания

» » Календарно-тематичсекий план по физике в спо календарно-тематическое планирование по физике на тему. Конспекты лекций по физике для СПО.doc - Конспекты лекций по физике для СПО Формирование основных понятий статистической физики

Календарно-тематичсекий план по физике в спо календарно-тематическое планирование по физике на тему. Конспекты лекций по физике для СПО.doc - Конспекты лекций по физике для СПО Формирование основных понятий статистической физики

КОНСПЕКТЫ ЛЕКЦИЙ
Естествознание (ФИЗИКА)
по специальности СПО 38.02.01.
«Экономика и бухгалтерский учет (по отраслям)»
Форма обучения (очная)
Преподаватель: Деменин Л.Н.

Владивосток
2018
2

Пояснительная записка
Данная рабочая программа по физике составлена на основе:
 Федерального компонента государственного образовательного стандарта
основного общего образования. утвержденный приказом Минобразования РФ №1089
от.05.03.2004.
 программы Г.Я. Мякишева (Сборник программ для общеобразовательных
учреждений: физика 10 ­ 11 классы / Н.Н. Тулькибаева, АЭ Пушкарев. – М:. Просвещение.
2006).
Программа среднего (полного) общего образования (базовый уровень) рассчитана на
41 час.
Материал соответствует примерной программе по физике среднего (полного)
общего образования (базовый уровень), обязательному минимуму содержания,
рекомендованному Министерством образования РФ.
Изучение физики на базовом уровне направлено на достижение следующих целей:
 освоение знаний о фундаментальных физических законах и принципах, лежащих в
основе современной физической картины мира; наиболее важных открытиях в области
физики, оказавших определяющее влияние на развитие техники и технологии; методах
научного познания природы;
 овладение умениями проводить наблюдения, планировать и выполнять
эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по
физике для объяснения разнообразных физических явлений и свойств веществ;
практического использования физических знаний;
 развитие познавательных интересов, интеллектуальных и творческих
способностей в процессе приобретения знаний и умений по физике с использованием
различных источников информации, в том числе средств современных информационных
технологий; формирование умений оценивать достоверность естественнонаучной
информации;
 воспитание убежденности в возможности познания законов природы;
использования достижений физики на благо развития человеческой цивилизации;
необходимости сотрудничества в процессе совместного выполнения задач, уважительного
отношения к мнению оппонента при обсуждении проблем естественнонаучного
3

содержания; готовности к морально­этической оценке использования научных достижений,
чувства ответственности за защиту окружающей среды;
 использование приобретенных знаний и умений для решения практических
задач повседневной жизни, обеспечения безопасности собственной жизни.
Изучение курса физики в 10­11 классах структурировано на основе физических
теорий следующим образом: механика, молекулярная физика, электродинамика, оптика,
квантовая физика и элементы астрофизики.
Требования к уровню подготовки учащихся:
В результате изучения физики ученик должен знать:
 смысл понятий: физическое явление, гипотеза, закон, теория, вещество,
взаимодействие, электромагнитное поле;
 смысл физических величин: скорость, ускорение, масса, сила, импульс, работа,
механическая энергия, внутренняя энергия, абсолютная температура, средняя
кинетическая энергия частиц вещества, количество теплоты, элементарный электрический
заряд;
 смысл физических законов классической механики, всемирного тяготения,
сохранения энергии, импульса и электрического заряда, термодинамики;
 вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие
физики;
Уметь

:
 описывать и объяснять физические явления и свойства тел: движение
небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел;
электромагнитную индукцию, распространение электромагнитных волн; волновые свойства
света; излучение и поглощение света атомом; фотоэффект;
 отличать
гипотезы от научных теорий;
делать выводы на основе
экспериментальных данных; приводить примеры, показывающие, что: наблюдения и
эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить
истинность теоретических выводов; физическая теория дает возможность объяснять
известные явления природы и научные факты, предсказывать еще неизвестные явления;
 приводить примеры практического использования физических знаний: законов
механики, термодинамики и электродинамики в энергетике; различных видов
4

электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в
создании ядерной энергетики, лазеров;
 воспринимать и на основе полученных знаний самостоятельно оценивать
информацию, содержащуюся в сообщениях СМИ, Интернете, научно­популярных статьях;
использовать приобретенные знания и умения в практической деятельности и
повседневной жизни для:
 обеспечения безопасности жизнедеятельности в процессе использования
транспортных средств,
телекоммуникационной связи.;
бытовых электроприборов,
средств радио­
и
 оценки влияния на организм человека и другие организмы загрязнения окружающей
среды;
 рационального природопользования и защиты окружающей среды.
Рабочая программа конкретизирует содержание предметных тем образовательного
стандарта на базовом уровне; дает распределение учебных часов по разделам и
последовательность изучения разделов физики с учетом межпредметных и
внутрипредметных связей, логики учебного процесса, возрастных особенностей учащихся;
определяет набор опытов, демонстрируемых учителем в классе, лабораторных и
практических работ, выполняемых учащимися.
В ходе изучения курса физики предусмотрен тематический и итоговый контроль в
форме самостоятельных, контрольных и лабораторных работ.
5

Тема: Механика
Лекция № 1 (3 ч.)
Кинематика. Основы динамики.
Механическое движение.
Система отсчета.
Перемещение. Уравнение равномерного прямолинейного движения. Мгновенная скорость.
Относительность движения.
Ускорение. Равноускоренное движение. Свободное падение. Движение с постоянным
ускорением свободного падения. Движение тел. Поступательное движение. Вращательное
движение. Центростремительное ускорение.
Взаимодействие тел.
Законы Ньютона.
Инерциальная система отсчета.
Материальная точка. Масса сила. Сложение сил. Равнодействующая сила. Силы в
механике. Гравитационные силы. Закон всемирного тяготения. Сила тяжести и вес. Первая
космическая скорость. Сила упругости. Закон Гука. Деформация и силы упругости. Силы
трения.
Законы сохранения. Статика.
Импульс тела. Закон сохранения импульса. Реактивное движение. Работа и
мощность. Потенциальная и кинетическая энергии. Закон сохранения механической
энергии. Условие равновесия тел. Условия равновесия твердого тела.
Литература:

кл.­ М.: Просвещение, 1996 г;
2. Мякишев Г.Я\ Буховцев Б.Б; Сотский Н.Н. Физика 10­11 кл­ М.: Просвещение, 2008
г;
3. Перышкин А.В., Разумовский В.Г., Фабрикант В.А. Основы методики преподавания

4.
Поляковский С.Е. Открытые уроки по физике 10­11 кл. М.: ООО «ВАКО», 2005 г;
5. Рымкевич А.П. Задачник по физике. – М.: Дрофа 1999 г;
6. Самостоятельные и контрольные работы. Физика. Кирик, Л. А П.­М.:Илекса,2005;
7. Физика. Задачник. 10­11 кл.: Пособие для общеобразоват. учреждений / Рымкевич
А.
8. Экспериментальные задания по физике. 9­11 кл.: учеб. пособие для учащихся
общеобразоват. учреждений / О. Ф. Кабардин, В. А. Орлов. ­ М.: Вербум­М, 2001. ­ 208 с.
6

Тема: Молекулярная физика
Лекция № 2 (3 ч.)
Основы молекулярно­кинетической теории
Основы положения молекулярно­кинетической теории. Свойство газов, жидкостей и
твердых тел. Диффузия. Броуновское движение. Количество вещества. Масса и размеры
молекул. Молярная масса. Идеальный газ. Средняя кинетическая энергия поступательного
движения молекул. Основное уравнение молекулярно – кинетической теории. Абсолютная
температура. Средняя квадратичная скорость молекул. Измерение скоростей молекул газа.
Уравнение состояния идеального газа. Газовые законы. Уравнение Менделеева –
Клапейрона. Изменение агрегатного состояния вещества. Насыщенный пар. Кипение.
Влажность воздуха. Кристаллические и аморфные тела.
Основы термодинамики
Основные понятия термодинамики. Внутренняя энергия. Количество теплоты.
Работа газа. Первый закон термодинамики. Применение первого закона термодинамики к
изопроцессам. Необратимость тепловых процессов. Второй закон термодинамики.
Принцип действия тепловых машин. КПД тепловых двигателей.
Литература:
1. Бурова В.А., Никифорова Г.Г. фронтальные лабораторные занятия по физике, 7­11
кл.­ М.: Просвещение, 1996 г;

г.;
г.;



физики в средней школе.­ М.: Просвещение, 1984 г.;




П. ­ 12­е изд., стереотип. ­ М.: Дрофа, 2008. ­ 192 с.;
7



208 с.
Тема: Электродинамика.
Лекция № 3 (3 ч.)
Электрическое поле. Законы постоянного тока.
Электрическое взаимодействие. Элементарный электрический заряд. Дискретность
электрического заряда. Закон сохранения электрического заряда. Закон Кулона.
Кулоновская сила. Электрическое поле. Электростатическое поле. Напряженность
электрического поля. Силовые линии. Однородное электрическое поле.
Диэлектрики в электрическом поле. Поляризация диэлектриков. Диэлектрическая
проницаемость. Проводники в электрическом поле.
Работа электрического поля при перемещении заряда. Потенциальность
электростатического поля. Разность потенциалов. Напряжение. Связь между напряжением
и напряженностью однородного электрического поля.
Электрическая емкость. Конденсатор. Энергия электрического поля конденсатора.
Электрический ток. Сила тока. Сопротивление проводников. Закон Ома для участка
цепи. Применение закона Ома для участка цепи к последовательному и параллельному
соединениям проводников. Работа и мощность электрического тока.
Сторонние силы. ЭДС. Закон Ома для полной цепи. Ток короткого замыкания.
Носители свободных электрических зарядов в металлах, жидкостях, газах и
вакууме. Полупроводники. Электропроводность полупроводников и её зависимость от
температуры. Собственная и примесная проводимости проводников.
Магнитное поле. Электромагнитная индукция
Магнитное поле. Вектор магнитной индукции. Сила Ампера. Сила Лоренца.
Магнитные свойства вещества. Электромагнитная индукция. Закон электромагнитной
индукции. Самоиндукция. Индуктивность. Энергия магнитного поля.
Производство, передача и потребление электрической энергии
Генерирование электрической энер гии. Трансформатор. Передача электрической
энергии.
Литература:
8

1. Бурова В.А., Никифорова Г.Г. фронтальные лабораторные занятия по физике, 7­11
кл.­ М.: Просвещение, 1996 г;
2. Марон А.Е., Марон Е.А. Дидактический материал. Физика 10­11кл­ М.: Дрофа, 2002
г.;
г.;
3. Малинин А.Н. Сборник вопросов и задач по физике ­ М.: Просвещение, 2002 г.;
4. Мякишев Г.Я\ Буховцев Б.Б; Сотский Н.Н. Физика 10­11 кл­ М.: Просвещение, 2008
5. Перышкин А.В., Разумовский В.Г., Фабрикант В.А. Основы методики преподавания
физики в средней школе.­ М.: Просвещение, 1984 г.;
6. Поляковский С.Е. Открытые уроки по физике 10­11 кл. М.: ООО «ВАКО», 2005 г.;
7. Рымкевич А.П. Задачник по физике. – М.: Дрофа 1999 г.;
8. Самостоятельные и контрольные работы. Физика. Кирик, Л. А П.­М.:Илекса,2005;
9. Физика. Задачник. 10­11 кл.: Пособие для общеобразоват. учреждений / Рымкевич А.
П. ­ 12­е изд., стереотип. ­ М.: Дрофа, 2008. ­ 192 с.;
10. Экспериментальные задания по физике. 9-11 кл.: учеб. пособие для учащихся
общеобразоват. учреждений / О. Ф. Кабардин, В. А. Орлов. - М.: Вербум­М, 2001. -
208 с.
Тема: Колебания и волны
Лекция № 4 (3 ч.)
Механические и электрические колебания
Свободные колебания. Математический маятник. Гармонические колебания.
Амплитуда, период, частота и фаза колебаний. Вынужденные колебания. Резонанс.
Автоколебания.
Свободные колебания в колебательном контуре. Период свободных электрических
колебаний. Вынужденные колебания. Переменный электрический ток. Емкость и
индуктивность в цепи переменного тока. Мощность в цеди переменного тока. Резонанс в
электрической цепи.
Механические и электромагнитные волны
Продольные и поперечные волны. Длина волны. Скорость распространения волны.
Звуковые волны. Интерференция воли. Принцип Гюйгенса. Дифракция волн.
Излучение электромагнитных волн. Свойства электромагнитных волн. Принципы
радиосвязи. Телевидение.
9

Литература:
1. Бурова В.А., Никифорова Г.Г. фронтальные лабораторные занятия по физике, 7­11
кл.­ М.: Просвещение, 1996 г;
2. Марон А.Е., Марон Е.А. Дидактический материал. Физика 10­11кл­ М.: Дрофа, 2002
г.;
г.;
3. Малинин А.Н. Сборник вопросов и задач по физике ­ М.: Просвещение, 2002 г.;
4. Мякишев Г.Я\ Буховцев Б.Б; Сотский Н.Н. Физика 10­11 кл­ М.: Просвещение, 2008
5. Перышкин А.В., Разумовский В.Г., Фабрикант В.А. Основы методики преподавания
физики в средней школе.­ М.: Просвещение, 1984 г.;
6. Поляковский С.Е. Открытые уроки по физике 10­11 кл. М.: ООО «ВАКО», 2005 г.;
7. Рымкевич А.П. Задачник по физике. – М.: Дрофа 1999 г.;
8. Самостоятельные и контрольные работы. Физика. Кирик, Л. А П.­М.:Илекса,2005;
9. Физика. Задачник. 10­11 кл.: Пособие для общеобразоват. учреждений / Рымкевич А.
П. ­ 12­е изд., стереотип. ­ М.: Дрофа, 2008. ­ 192 с.;
10. Экспериментальные задания по физике. 9-11 кл.: учеб. пособие для учащихся
общеобразоват. учреждений / О. Ф. Кабардин, В. А. Орлов. - М.: Вербум­М, 2001. -
208 с.
Тема: Оптика
Лекция № 5 (3 ч.)
Световые волны. Излучение и спектры.
Закон преломления света. Призма. Дисперсия света. Формула тонкой линзы.
Получение изображения с помощью линзы. Светоэлектромагнитные волны. Скорость света
и методы ее измерения, Интерференция света. Когерентность. Дифракция света.
Дифракционная решетка. Поперечность световых волн. Поляризация света. Излучение и
спектры. Шкала электромагнитных волн.
Элементы теории относительности.
Основы специальной теории относительности. Постулаты теории относительности.
Принцип относительности Эйнштейна. Постоянство скорости света. Пространство и время
в специальной теории относительности. Релятивистская динамика. Связь массы с энергией.
Литература:
10

1. Бурова В.А., Никифорова Г.Г. фронтальные лабораторные занятия по физике, 7­11
кл.­ М.: Просвещение, 1996 г;
2. Марон А.Е., Марон Е.А. Дидактический материал. Физика 10­11кл­ М.: Дрофа, 2002
г.;
г.;
3. Малинин А.Н. Сборник вопросов и задач по физике ­ М.: Просвещение, 2002 г.;
4. Мякишев Г.Я\ Буховцев Б.Б; Сотский Н.Н. Физика 10­11 кл­ М.: Просвещение, 2008
5. Перышкин А.В., Разумовский В.Г., Фабрикант В.А. Основы методики преподавания
физики в средней школе.­ М.: Просвещение, 1984 г.;
6. Поляковский С.Е. Открытые уроки по физике 10­11 кл. М.: ООО «ВАКО», 2005 г.;
7. Рымкевич А.П. Задачник по физике. – М.: Дрофа 1999 г.;
8. Самостоятельные и контрольные работы. Физика. Кирик, Л. А П.­М.:Илекса,2005;
9. Физика. Задачник. 10­11 кл.: Пособие для общеобразоват. учреждений / Рымкевич А.
П. ­ 12­е изд., стереотип. ­ М.: Дрофа, 2008. ­ 192 с.;
10. Экспериментальные задания по физике. 9-11 кл.: учеб. пособие для учащихся
общеобразоват. учреждений / О. Ф. Кабардин, В. А. Орлов. - М.: Вербум­М, 2001. -
208 с.
Лекция № 6 (3 ч.)
Тема: Правовое регулирование рынка ценных бумаг
Световые кванты. Атомная физика.
Различные виды электромагнитных излучений и их практическое применение:
свойства и применение инфракрасных, ультрафиолетовых и рентгеновских излучений.
Шкала электромагнитных излучений. Постоянная Планка. Фотоэффект. Уравнение
Эйнштейна для фотоэффекта. Фотоны. [Гипотеза Планка о квантах.] Фотоэффект.
[Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно­волновой дуализм.
Соотношение неопределенности Гейзенберга.]Лазеры.
Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Модель атома
водорода Бора. [Модели строения атомного ядра: протонно­нейтронная модель строения
атомного ядра.] Ядерные силы. Дефект массы и энергия связи нуклонов в ядре. Ядерная
энергетика. Трудности теории Бора. Квантовая механика. Гипотеза де Бройля.
Корпускулярное волновой дуализм. Дифракция электронов. Лазеры.
Физика атомного ядра. Элементарные частицы.
11

Методы регистрации элементарных частиц. Радиоактивные превращения. Закон
радиоактивного распада. Протон­нейтронная модель строения атомного ядра. Энергия
связи нуклонов в ядре. Деление и синтез ядер. Ядерная энергетика. Влияние ионизирующей
радиации на живые организмы. [Доза излучения, закон радиоактивного распада и его
частицы и античастицы.
статистический характер.
Элементарные частицы:
Фундаментальные взаимодействия].
Литература:
1. Бурова В.А., Никифорова Г.Г. фронтальные лабораторные занятия по физике, 7­11
кл.­ М.: Просвещение, 1996 г;
2. Марон А.Е., Марон Е.А. Дидактический материал. Физика 10­11кл­ М.: Дрофа, 2002
г.;
г.;
3. Малинин А.Н. Сборник вопросов и задач по физике ­ М.: Просвещение, 2002 г.;
4. Мякишев Г.Я\ Буховцев Б.Б; Сотский Н.Н. Физика 10­11 кл­ М.: Просвещение, 2008
5. Перышкин А.В., Разумовский В.Г., Фабрикант В.А. Основы методики преподавания
физики в средней школе.­ М.: Просвещение, 1984 г.;
6. Поляковский С.Е. Открытые уроки по физике 10­11 кл. М.: ООО «ВАКО», 2005 г.;
7. Рымкевич А.П. Задачник по физике. – М.: Дрофа 1999 г.;
8. Самостоятельные и контрольные работы. Физика. Кирик, Л. А П.­М.:Илекса,2005;
9. Физика. Задачник. 10­11 кл.: Пособие для общеобразоват. учреждений / Рымкевич А.
П. ­ 12­е изд., стереотип. ­ М.: Дрофа, 2008. ­ 192 с.;
10. Экспериментальные задания по физике. 9-11 кл.: учеб. пособие для учащихся
общеобразоват. учреждений / О. Ф. Кабардин, В. А. Орлов. - М.: Вербум­М, 2001. -
208 с.
Тема: Значение физики для объяснения мира и развития производительных
Лекция № 7 (2 ч.)
сил общества
Единая физическая картина мира.
Литература:
1. Бурова В.А., Никифорова Г.Г. фронтальные лабораторные занятия по физике, 7­11
кл.­ М.: Просвещение, 1996 г;
12

2. Марон А.Е., Марон Е.А. Дидактический материал. Физика 10­11кл­ М.: Дрофа, 2002
3. Малинин А.Н. Сборник вопросов и задач по физике ­ М.: Просвещение, 2002 г.;
4. Мякишев Г.Я\ Буховцев Б.Б; Сотский Н.Н. Физика 10­11 кл­ М.: Просвещение, 2008
г.;
г.;
5. Перышкин А.В., Разумовский В.Г., Фабрикант В.А. Основы методики преподавания
физики в средней школе.­ М.: Просвещение, 1984 г.;
6. Поляковский С.Е. Открытые уроки по физике 10­11 кл. М.: ООО «ВАКО», 2005 г.;
7. Рымкевич А.П. Задачник по физике. – М.: Дрофа 1999 г.;
8. Самостоятельные и контрольные работы. Физика. Кирик, Л. А П.­М.:Илекса,2005;
9. Физика. Задачник. 10­11 кл.: Пособие для общеобразоват. учреждений / Рымкевич А.
П. ­ 12­е изд., стереотип. ­ М.: Дрофа, 2008. ­ 192 с.;
10. Экспериментальные задания по физике. 9-11 кл.: учеб. пособие для учащихся
общеобразоват. учреждений / О. Ф. Кабардин, В. А. Орлов. - М.: Вербум­М, 2001. -
208 с.
Тема: Строение Вселенной 1 ч.
Лекция № 8 (2 ч.)
Строение Солнечной системы. Система Земля­Луна. Общие сведения о Солнце.
Определение расстояний до тел Солнечной системы и размеров этих небесных тел.
Источники энергии и внутреннее строение Солнца. Физическая природа звёзд. Астероиды и
метеориты. Наша Галактика. Происхождение и эволюция галактик и звёзд.
Литература:
1. Бурова В.А., Никифорова Г.Г. фронтальные лабораторные занятия по физике, 7­11
кл.­ М.: Просвещение, 1996 г;
2. Марон А.Е., Марон Е.А. Дидактический материал. Физика 10­11кл­ М.: Дрофа, 2002
г.;
г.;
3. Малинин А.Н. Сборник вопросов и задач по физике ­ М.: Просвещение, 2002 г.;
4. Мякишев Г.Я\ Буховцев Б.Б; Сотский Н.Н. Физика 10­11 кл­ М.: Просвещение, 2008
5. Перышкин А.В., Разумовский В.Г., Фабрикант В.А. Основы методики преподавания
физики в средней школе.­ М.: Просвещение, 1984 г.;
6. Поляковский С.Е. Открытые уроки по физике 10­11 кл. М.: ООО «ВАКО», 2005 г.;
7. Рымкевич А.П. Задачник по физике. – М.: Дрофа 1999 г.;классов средней школы.
Особенностью данных рекомендаций является выделение базового курса физики
старших классов средней школы.
Структура базового курса физики реализуется использованием учебников Г.Я.
Мякишева, Б.Б. Буховцева и Н.Н. Сотского (Физика. Учебники для 10 и 11 класса).
Базовый курс физики включает в основном вопросы методологии науки физики и
раскрытие на понятийном уровне. Физические законы, теории и гипотезы в большей части
вошли в содержание профильного курса.
Содержание конкретных учебных занятий соответствует обязательному
минимуму. Форма проведения занятий (урок, лекция, семинар и др.) планируется
учителем. Термин «решение задач» в планировании определяет вид деятельности. В
предложенном планировании предусматривается учебное время на проведение
самостоятельных и контрольных работ.
Методы обучения физике так же определяет учитель, который включает
учащихся в процесс самообразования. У учителя появляется возможность управления
процессом самообразования учащихся в рамках образовательного пространства, которое
создается в основном единым учебником, обеспечивающим базовый уровень стандарта.
Учебный процесс при этом выступает ориентиром в освоении методов познания,
конкретных видов деятельности и действий, интеграции всего в конкретные компетенции.
Выполнение заданий исследовательского и практического характера обязательно
должны учитываться во время практических занятий, на зачетах. Конспектирование
первоисточников необходимо осуществлять в отдельной тетради. Выполненные
самостоятельные задания следует оформлять согласно ГОСТу. При организации
практических занятий особое внимание следует уделять формированию теоретических
знаний и практических умений.
Программа дисциплины представлена 8 темами.
15

СЕМИНАР ДИРЕКТОРОВ ШКОЛ ЧЕРЕКСКОГО РАЙОНА
ПЛАН - КОНСПЕКТ

ОТКРЫТОГО УРОКА

по физике

Основные положения молекулярно- кинетической теории

Учитель физики

МОУ «Средняя общеобразовательная

школа п. Кашхатау»

Мокаева Н.И.

Кашхатау - 2007

Тема урока.

Основные положения молекулярно- кинетической теории (МКТ)

Цели урока:

Образовательные:




  • установить характер зависимости сил притяжения и отталкивания от расстояния между молекулами;

  • учиться решать качественные задачи;
Развивающие:
развивать:

  • умение применять знания теории на практике;

  • наблюдательность, самостоятельность;

  • мышление учащихся посредством логических учебных действий.
Воспитательные:

  • продолжить формирование представлений о единстве и взаимосвязи явлений природы.
Планируемые результаты:

Знать:


  • основные положения молекулярно кинетической теории и их опытные обоснования; понятия диффузии, броуновского движения.
Уметь:

  • формулировать гипотезы и делать выводы, решать качественные задачи.
Тип урока: изучение нового материала

Форма урока: комбинированный

Комплексно-методическое обеспечение: мультимедийный проектор, компьютер, экран, колба с покрашенной водой, 2 мензурки со спиртом и водой, мензурка (пустая), раствор аммиака, свинцовые цилиндры, марганцовка.

Методы обучения:


  • словесные

  • наглядные

  • практические

  • проблемные (вопросы)
Межпредметные связи:

  • химия

  • информатика
Ход урока:

Эпиграф :

Воображение правит миром.
Наполеон 1

Не существует ничего, кроме атомов.
Демокрит

Организационный момент (мотивация учебной деятельности)

Введение в молекулярную физику

Все вы на уроках физики изучали физические явления, такие как механические, электрические и оптические, но кроме этих явлений в окружающем нас мире столь же распространены – тепловые явления. Тепловые явления изучает молекулярная физика. Кроме того, до сегодняшнего дня мы изучали физику так называемых «макроскопических» тел (от греч. – «макрос» - большой). Теперь нас будет интересовать и то, что происходит внутри тел.


Таким образом, мы приступаем к изучению молекулярной физики – будем рассматривать строения и свойства вещества на основе МКТ.

Согласитесь! Мир удивителен и многообразен. Еще с древних времен люди пытались представить его в воображении, на основании фактов, полученных в результате наблюдений или опытов. Сегодня мы с вами вслед за учеными сделаем попытку заглянуть в него.


  1. Из истории молекулярно-кинетической теории
Фундаментом МКТ является атомическая гипотеза, что все тела в природе состоят из мельчайших структурных единиц – атомов и молекул. (слайд2)Около 2500 лет назад в Др.Греции зародилась атомическая гипотеза, одним из ее авторов является Демокрит (легенда о Демокрите)
Большой вклад в теорию внес в 18 в. выдающийся русский ученый-энциклопедист М.В.Ломоносов, рассматривает тепловые явления, как результат движения частиц, образующих тела.
Теория была окончательно сформулирована в19 в. в трудах Европейских ученых.

  1. Изучение нового материала
В основе МКТ строения вещества лежат четыре основных положения.

Тема урока: Основные положения МКТ”

Цели:


  • сформулировать основные положения МКТ;

  • раскрыть научное и мировоззренческое значение броуновского движения;

  • установить характер зависимости сил притяжения и отталкивания от расстояния между молекулами.
I положение МКТ (Все тела состоят из вещества)

В каких агрегатных состояниях могут находиться вещества?

Приведите примеры.
- Из чего состоит вещество?
(Вещество состоит из частиц)
Вот мы и сформулировали I положение МКТ

Все вещества состоят из частиц(I).
- Из чего состоят частицы?
- Мы сформулировали I положение, но все предположения должны быть доказаны.

Доказательства:


  1. Механическое дробление (мел) (демонстрация опыта)

  2. Растворение вещества (марганцовка, сахар)

  3. Ну, и прямое доказательства – электронные и ионные микроскопы
II положение МКТ

Получим II положение МКТ.

1) Проведем опыт. Насыплем немного марганцовки в колбу с водой. Что мы наблюдаем? (вода постепенно окрашивается)

Почему вода окрасилась?

2) Что произойдет через некоторое время, если я открою пузырек с пахучим веществом?
- Почувствуем запах.

Вывод: Запах пахучего вещества распространится по всей комнате и перемешается с воздухом.

Как называется это явление?
- Диффузия

Определение: Диффузия – процесс взаимного проникновения различных веществ, обусловленный тепловым движением молекул.

В каких телах возникает диффузия?
- Диффузия возникает в газах, жидкостях и твердых телах.
- Приведите примеры диффузии (приводят примеры).
- У каких тел скорость движения молекул будет самой наибольшей? Наименьшей?
-V газ >V жид >V тв.телах.

Однажды, в 1827г., английский ученый- ботаник Роберт Броун рассматривал в микроскоп взвешенные в воде споры плауна и обнаружил необычное явление: споры плауна без видимых на то причин скачкообразно двигались. Броун наблюдал это движение несколько дней, однако так и не смог дождаться его прекращения. Впоследствии это движение было названо броуновским . (Примеры: муравьи в блюде, игра “Пушбол”, частички пыли и дыма в газе).

Попробуем объяснить это движение. Как вы думаете, в чем причина движения «неживых» частичек?

Объяснить это явление можно, если предположить, что молекулы воды находятся в постоянном, никогда не прекращающемся движении. Они беспорядочно сталкиваются друг с другом. Наталкиваясь на споры, молекулы вызывает их скачкообразные перемещение. Количество ударов молекул о спору с разных сторон не всегда одинаково. Под действием «перевеса» удара с какой– нибудь стороны, спора будет перескакивать с места на место.

Определение: Броуновское движение – тепловое движение взвешенных в жидкости или газе частиц.

Причина движения: удары молекул о частицу не компенсируют друг друга.

II положение МКТ частицы вещества непрерывно и беспорядочно (хаотически) движутся.

Доказательства:

Диффузия.

Броуновское движение.

III положение МКТ

Проведем опыт. В одну мензурку нальем 100 мл воды, а в другую – 100 мл подкрашенного спирта. Перельем жидкости из этих мензурок в третью. Удивительно, но объем смеси получится не 200 мл, а меньше: около 190 мл. Почему же так происходит?


Ученые установили, что вода и спирт состоят из мельчайших частиц, называемых молекулами. Они настолько малы, что не видны даже в микроскоп. Тем не менее известно, что молекулы спирта в 2-3 раза крупнее молекул воды. Поэтому при сливании жидкостей их частицы перемешиваются, и более мелкие частицы воды размещаются в промежутках между более крупными частицами спирта. Заполнение этих промежутков и способствует уменьшению общего объема веществ.

Т.е. между частицами вещества имеются промежутки.

Скажите пожалуйста, можем ли мы на примере явления диффузии доказать, что между частицами имеются промежутки? (Доказательство )

Итак, III положение МКТ – между частицами вещества имеются промежутки

IV положение МКТ

Мы знаем, что тела и вещества состоят из отдельных частиц, между которыми есть промежутки. Почему же тогда тела не рассыпаются на отдельные частицы, подобно гороху в разорвавшемся пакете?


П роделаем опыт . Возьмем два свинцовых цилиндрика. Ножом или лезвием зачистим их торцы до блеска и плотно прижмем друг к другу. Мы обнаружим, что цилиндрики "сцепятся". Сила их сцепления настолько велика, что при удачном проведении опыта цилиндрики выдерживают тяжесть гири в 5 кг.

Из опыта следует вывод: частицы веществ способны притягиваться друг к другу. Однако это притяжение возникает лишь тогда, когда поверхности тел очень гладкие (для этого и понадобилась зачистка лезвием) и, кроме того, плотно прижаты друг к другу.

Опыт. Смачиваю две стеклянные пластинки и прижимаю их друг к другу. После пытаюсь их отсоединить, для этого прилагаю некоторые усилия.

Частицы веществ способны отталкиваться друг от друга. Это подтверждается тем, что жидкие, а особенно твердые тела очень трудно сжать. Например, чтобы сдавить резиновый ластик, требуется значительная сила! Ластик гораздо легче изогнуть, чем сдавить.



Притяжение или отталкивание частиц веществ возникает лишь в том случае, если они находятся в непосредственной близости. На расстояниях, чуть больших размеров самих частиц, они притягиваются. На расстояниях, меньших размеров частиц, они отталкиваются. Если же поверхности тел удалены на расстояние, заметно большее, чем размер частиц, то взаимодействие между ними не проявляется никак. Например, нельзя заметить никакого притяжения между свинцовыми цилиндриками, если их сначала не сжать, то есть не сблизить их частицы.

Возникновение силы упругости. Сжимая или растягивая, изгибая или скручивая тело, мы сближаем или удаляем его частицы. Поэтому между ними возникают силы притяжения-отталкивания, которые мы и объединяем термином "сила упругости".



Взгляните на рисунок. На нем мы условно изобразили частицы резины изгибаемого ластика. Вы видите, что около верхней грани ластика частицы резины сближаются друг с другом. Это приводит к возникновению между ними сил отталкивания. Вблизи нижней грани ластика частицы удаляются друг от друга, что приводит к возникновению между ними сил притяжения. В результате их действия ластик стремится выпрямиться, то есть вернуться в недеформированное состояние. Другими словами, в ластике возникает сила упругости, направленная противоположно силе, вызвавшей деформацию.

Вывод: Частицы притягиваются и отталкиваются.

- Сформулируйте I V положение МКТ
Частицы, взаимодействуют друг с другом, притягиваются и отталкиваются

Опытные обоснования:


- склеивание;
- смачивание;
- твердые тела и жидкости трудно сжать, деформация.

Преподаватель. Если бы между молекулами не существовало сил притяжения, то вещество бы при любых условиях находилось в газообразном состоянии, только благодаря силам притяжения молекулы могут удерживаться около друг друга и образовывать жидкости и твердые тела.


Если бы не было сил отталкивания, то мы свободно могли бы проткнуть пальцем толстую стальную плиту. Более того, без проявления сил отталкивания вещество не могло бы существовать. Молекулы проникли бы друг в друга и сжались бы до объема одной молекулы.

Вывод:


    1. силы притяжения и отталкивания действуют одновременно;

    2. силы имеют электромагнитную природу.
Закрепление:

Сформулируйте основные положения МКТ.

Какие опытные факты подтверждают I положение МКТ?

Какие опытные факты подтверждают II положение МКТ?

Какие опытные факты подтверждают III положение МКТ?

Какие опытные факты подтверждают IV положение МКТ?

Решение качественных задач


    1. На каком физическом явлении основан процесс засолки овощей, консервирования фруктов?

    2. В каком случае процесс происходит быстрее – если рассол холодный или горячий?

    3. Почему сладкий сироп приобретает со временем вкус фруктов?

    4. Почему сахар и другие пористые продукты нельзя хранить вблизи пахучих веществ?

    5. Как можно объяснить исчезновение дыма в воздухе?

    6. Почему стол, стул не совершают броуновского движения?

    7. Почему из осколков разбитого стакана невозможно собрать целый стакан, а хорошо отшлифованные цилиндры плотно прилипают друг к другу?
Домашние задание
Рефлексия учебной деятельности

Дабы ты лучше постиг, что тела основные мятутся


В вечном движеньи всегда, припомни, что дна никакого
Нет у Вселенной нигде, и телам изначальным остаться
Негде на месте, раз нет ни конца, ни пределу пространству,
Если безмерно оно и простерто во всех направленьях,
Как я подробно уже доказал на основе разумной.

Тит Лукреций Кар (ок. 99 – 55 гг. до н. э.)

Примечание: под “телами основными” и “телами изначальными” понимаются мельчайшие частицы вещества – атомы и молекулы.

Подведение итогов.

Конспект открытого урока по теме «Постоянный электрический ток» I курс (СПО)

Цель урока: Обобщение знаний по теме "Постоянный электрический ток".

Задачи:

образовательная: повторить основные величины, понятия, законы.

развивающая: устанавливать логические связи между физическими величинами, понятиями, уметь обобщать полученные знания.

воспитательная: уметь работать в группах, получать положительную мотивацию от полученных знаний.

Оборудование:

Интерактивная доска

Лабораторное оборудование:

амперметр,

вольтметр,

2 резистора,

выключатель,

соединитель провода.

Наглядность : электрическая цепь, путеводитель.

Ход урока

Организационный момент.

Вступительное слово учителя. Сегодня ребята нам предстоит обобщить изученный материал по теме "Постоянный электрический ток", совершив путешествие по стране "Электричество". И начнем с города "Перепутье".

Основная часть урока.

1) "Перепутье". Время - 5 мин.

Найди правильную дорогу. На интерактивной доске представлены все изученные физические величины. Найти правильную дорогу, последовательно провести линии.

Задание распечатано на листах и раздается всем учащимся и 1 учащийся у доски.

2) "Подумайград". Время - 2 мин.

Вопрос записан на доске. Устно. Кто первый ответит? (Используется Презентация РРS).

Вопрос: Почему количество единиц измерения не соответствует количеству физических величин?

Ответ: 1) А (работа), Q (количество теплоты) - имеют одну и ту же единицу измерения [Дж] Джоуль.

2) Е (электродвижущая сила), U (напряжение) - также имеют одну и ту же единицу измерения [В] - Вольт.

3) "Формулград". От каждой группы выходят к доске по 1 ученику. Время - 5 мин.

Допиши формулу. 3 человека выполняют на доске, остальные учащиеся выполняют в рабочих тетрадях.

4) "Прибороград". На интерактивной доске представлена следующая таблица. Учащиеся на листах с подписанными фамилиями отвечают цифрами (1-5), (2-6) и т.д. Время 3 мин.