Сочинения. Доклады. Рефераты. Краткие содержания

Сочинения. Доклады. Рефераты. Краткие содержания

» » Как решать тригонометрические квадратные уравнения. Конспект урока на тему "Тригонометрические уравнения, приводимые к квадратным" (10 класс)

Как решать тригонометрические квадратные уравнения. Конспект урока на тему "Тригонометрические уравнения, приводимые к квадратным" (10 класс)

Основными методами решения тригонометрических уравнений являются: сведение уравнений к простейшим (с использованием тригонометрических формул), введение новых переменных, разложение на множители. Рассмотрим их применение на примерах. Обратите внимание на оформление записи решений тригонометрических уравнений.

Необходимым условием успешного решения тригонометрических уравнений является знание тригонометрических формул (тема 13 работы 6).

Примеры.

1. Уравнения, сводящиеся к простейшим.

1) Решить уравнение

Решение:

Ответ:

2) Найти корни уравнения

(sinx + cosx) 2 = 1 – sinxcosx, принадлежащие отрезку .

Решение:

Ответ:

2. Уравнения, сводящиеся к квадратным.

1) Решить уравнение 2 sin 2 x – cosx –1 = 0.

Решение: Используя формулу sin 2 x = 1 – cos 2 x, получаем

Ответ:

2) Решить уравнение cos 2x = 1 + 4 cosx.

Решение: Используя формулу cos 2x = 2 cos 2 x – 1, получаем

Ответ:

3) Решить уравнение tgx – 2ctgx + 1 = 0

Решение:

Ответ:

3. Однородные уравнения

1) Решить уравнение 2sinx – 3cosx = 0

Решение: Пусть cosx = 0, тогда 2sinx = 0 и sinx = 0 – противоречие с тем, что sin 2 x + cos 2 x = 1. Значит cosx ≠ 0 и можно поделить уравнение на cosx. Получим

Ответ:

2) Решить уравнение 1 + 7 cos 2 x = 3 sin 2x

Решение:

Используем формулы 1 = sin 2 x + cos 2 x и sin 2x = 2 sinxcosx, получим

sin 2 x + cos 2 x + 7cos 2 x = 6sinxcosx
sin 2 x – 6sinxcosx+ 8cos 2 x = 0

Пусть cosx = 0, тогда sin 2 x = 0 и sinx = 0 – противоречие с тем, что sin 2 x + cos 2 x = 1.
Значит cosx ≠ 0 и можно поделить уравнение на cos 2 x. Получим

tg 2 x – 6 tgx + 8 = 0
Обозначим tgx = y
y 2 – 6 y + 8 = 0
y 1 = 4; y 2 = 2
а) tgx = 4, x= arctg4 + 2 k , k
б) tgx = 2, x= arctg2 + 2 k , k .

Ответ: arctg4 + 2 k , arctg2 + 2 k, k

4. Уравнения вида a sinx + b cosx = с, с ≠ 0.

1) Решить уравнение .

Решение:

Ответ:

5. Уравнения, решаемые разложением на множители.

1) Решить уравнение sin2x – sinx = 0.

Корнем уравнения f ( х ) = φ ( х ) может служить только число 0. Проверим это:

cos 0 = 0 + 1 – равенство верно.

Число 0 единственный корень данного уравнения.

Ответ: 0.

Вы можете заказать подробное решение вашей задачи !!!

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| \leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| \leq 1` имеет бесконечное множество решений.

Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

Частные случаи для синуса и косинуса в графиках.

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + \pi n, n \in Z`

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + \pi n, n \in Z`

Формулы корней тригонометрических уравнений в таблице

Для синуса:
Для косинуса:
Для тангенса и котангенса:
Формулы решения уравнений, содержащих обратные тригонометрические функции:

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя , преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

`\frac {sin^2 x}{cos^2 x}+\frac{sin x cos x}{cos^2 x} — \frac{2 cos^2 x}{cos^2 x}=0`

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:

`\frac a{sqrt {a^2+b^2}} sin x +` `\frac b{sqrt {a^2+b^2}} cos x =` `\frac c{sqrt {a^2+b^2}}`.

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a{sqrt {a^2+b^2}}=cos \varphi`, ` \frac b{sqrt {a^2+b^2}} =sin \varphi`, `\frac c{sqrt {a^2+b^2}}=C`, тогда:

`cos \varphi sin x + sin \varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:

`\frac {3 sin x} {sqrt {3^2+4^2}}+` `\frac{4 cos x}{sqrt {3^2+4^2}}=` `\frac 2{sqrt {3^2+4^2}}`

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos \varphi sin x+sin \varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`sin (x+\varphi)=2/5`,

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `\frac {sin x}{1+cos x}=1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

`\frac {sin x}{1+cos x}=` `\frac {(1-cos x)(1+cos x)}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {1-cos^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {sin^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}-` `\frac {sin^2 x}{1+cos x}=0`

`\frac {sin x-sin^2 x}{1+cos x}=0`

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

Тема урока: Тригонометрические уравнения, приводимые к квадратным, однородные тригонометрические уравнения.

Тип урока : Комбинированный урок.

Цели урока:

  • Ввести понятие однородные тригонометрические уравнения, приводимые к квадратным;
  • Ввести понятие тригонометрические уравнения 1 и 2 степени;
  • Сформировать у учащихся умение решать рассмотренные уравнения на базовом уровне.
  • Развивать умения анализировать и делать выводы;
  • Формировать умение самоанализа и контроля.
  • Воспитывать чувство ответственности;
  • Воспитывать умения работать в коллективе.
  • Оборудование урока: плакаты, карблицы, самооценки, набор карточек для самостоятельной работы, сигнальные карточки.

Структура урока:

1. Организационный этап.

2. Этап проверки домашнего задания.

3. Этап подготовки учащихся к активному и сознательному усвоения нового материала. Ознакомление с темой урока. Постановка цели и задач.

4. Этап усвоения новых знаний.

5. Этап проверки понимания учащимися нового материала.

6. Этап закрепления нового материала.

7. Этап информации учащихся о домашнем задании.

8. Этап всесторонней проверки знаний.

9. Подведение итогов. Рефлексия.

1. Организационный этап .

  • подготовить учащихся к работе на уроке.

2. Этап проверки домашнего задания .

  • установить наличие и правильность выполнения д/з всеми учащимися.

3. Этап подготовки учащихся к активному и сознательному усвоения нового материала.

  • с помощью создания проблемной ситуации подвести учащихся к новым видам тригонометрических уравнений. Учитель обращает внимание учащихся на магнитную доску, где расположены карточки с несколькими тригонометрическими уравнениями, и предлагает указать способы их решения.

1) соs (4x-2)=2

3) cos 2 x-2cosx=0

5) 8 sin 2 x-6sin x-5=0

6)8 cos 2 2x+6 sin 2x-3=0

7)2sin x- 3 cos x=0

9)3 sin 2 x- 4sin x cos x +cos 2 x=0

Учащиеся внимательно смотрят на магнитную доску, обьясняют, как можно решить то или иное уравнение. Если у учителя нет замечаний, карточка с записью названного уравнения убирается с магнитной доски.

В результате проделанной работы на магнтной доске остались уравнения, способ решения которых учащиеся не нашли. (№5, 7)

4. Этап усвоения новых знаний.

Ввести понятие " Тригонометрические уравнения, приводимые к квадратным";

  1. ввести понятие «тригонометрические уравнения, приводимые к квадратным»;
  2. ввести понятие однородных тригонометрических уравнений;
  3. разобрать способы решения однородных тригонометрических уравнений 1 и 2 степени;
  4. добиться умения определять вид однородных тригонометрических уравнений;
  5. освоить общие приемы решения тригонометрических уравнений, приводимых к квадратным, однородных тригонометрических уравнений.

Учитель называет виды оставшихся уравнений, и предлагает учащимся записать тему урока «Тригонометрические уравнения, решаемые путем приведения к квадратным. Однородные тригонометрические уравнения 1 и 2 степени».

Учитель делает записи на доске, а учащиеся в тетрадях:

Тригонометрические уравнения, решаемые путем приведения к квадратным.

1) Уравнения вида A×sin2 t +B×sin t + C = 0 , где А ¹ 0, решаются приведением к квадратному путем замены sin t = у (аналогично решаются уравнения с cos t, tg t, сtg t).

2) Уравнения вида A×sin2 t +B×cos t + C = 0. При решении используется основное тригонометрическое тождество sin2 t = 1 - cos2 t.

3) sin 2 t = a, а= . 4) cos 2 t = a, а= .

5) tg 2 t = a, а= . 6) ctg 2 t = a, а=

Подробно разбирается решение уравнения № 5, 4. Решение уравнения № 6, проводится при активном участии класса. Для решения уравнения № 8 вызывается ученик (по желанию).

Однородные тригонометрические уравнения 1 и 2 степени.

Уравнение, в котором каждое слагаемое имеет одну и ту же степень, называется однородным.

1) Уравнения вида A×sin t +B×cos t = 0, где А ¹ 0, В ¹ 0, называются однородными тригонометрическими уравнениями 1 степени. Они решаются путем деления обеих частей на cos t ¹ 0. Имеем A× tg t + B = 0.

2) Уравнения вида A×sin2 t +B sin t×cos t + С×cos2 t = 0 называются однородными тригонометрическими уравнениями 2 степени. Они решаются путем деления обеих частей на cos2 t ¹ 0. Имеем A× tg2 t + B× tg t + C = 0.

Учитель решает уравнение №7, с подробным объяснением. При решении уравнения № 9 с помощью вопросов подключает учащихся к активной работе. После приведения уравнения к виду 3tg2 t - 4 tg t + 1 = 0, предлагает учащимся по желанию выйти к доске и решить полученное уравнение.

  1. Этап проверки понимания учащимися нового материала.

Задача: установить, усвоили ли учащиеся способы решения нового вида уравнений.

СФЗ (самостоятельная работа по формированию знаний).

Определите вид уравнения и укажите способ его решения.

2)5 sin 3x+4cos3x=0 ;

3) sin 2 x+14sinx*cosx-15cos 2 x=0;

4) 1 + 7cos2 x + 3sin2 x = 0;

5)sin2x+sin 2 x=0 .

6. Этап закрепления нового материала.

Задача: закрепить у учащихся знания и умения, которые они получили на уроке.

Учитель предлагает учащимся решить на доске уравнения:

7. Этап информации учащихся о домашнем задании.

Задачи: сообщить учащимся домашнее задание, дать краткий инструктаж по его выполнению.

  1. просмотреть записи в тетради;
  2. разобрать решение примеров № 1 - 6 из учебника, стр. 78 - 79.
  3. выполнить № 167а), б); № 168 б); №169а); №170в).
  4. сильные учащиеся, вместо № 167, 168, могут решить уравнение:

15*(sin 2 x+sin x+ cos 2 2x) 2 +17+31sinx

8.Этап всесторонней проверки знаний.

Задачи: всесторонне проверить знания учащихся при решении уравнений, аналогичных рассмотренным на уроке, формировать умение самоанализа и контроля.

СФН (самостоятельная работа по формированию навыков).

Решите уравнения.

1 вариант.

2 вариант

3 вариант

4 вариант

9. Подведение итогов. Рефлексия.

При решении многих математических задач , особенно тех, которые встречаются до 10 класса, порядок выполняемых действий, которые приведут к цели, определен однозначно. К таким задачам можно отнести, например, линейные и квадратные уравнения, линейные и квадратные неравенства, дробные уравнения и уравнения, которые сводятся к квадратным. Принцип успешного решения каждой из упомянутых задач заключается в следующем: надо установить, к какому типу относится решаемая задача, вспомнить необходимую последовательность действий, которые приведут к нужному результату, т.е. ответу, и выполнить эти действия.

Очевидно, что успех или неуспех в решении той или иной задачи зависит главным образом от того, насколько правильно определен тип решаемого уравнения, насколько правильно воспроизведена последовательность всех этапов его решения. Разумеется, при этом необходимо владеть навыками выполнения тождественных преобразований и вычислений.

Иная ситуация получается с тригонометрическими уравнениями. Установить факт того, что уравнение является тригонометрическим, совсем нетрудно. Сложности появляются при определении последовательности действий, которые бы привели к правильному ответу.

По внешнему виду уравнения порой бывает трудно определить его тип. А не зная типа уравнения, почти невозможно выбрать из нескольких десятков тригонометрических формул нужную.

Чтобы решить тригонометрическое уравнение, надо попытаться:

1. привести все функции входящие в уравнение к «одинаковым углам»;
2. привести уравнение к «одинаковым функциям»;
3. разложить левую часть уравнения на множители и т.п.

Рассмотрим основные методы решения тригонометрических уравнений.

I. Приведение к простейшим тригонометрическим уравнениям

Схема решения

Шаг 1. Выразить тригонометрическую функцию через известные компоненты.

Шаг 2. Найти аргумент функции по формулам:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tg x = a; x = arctg a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Шаг 3. Найти неизвестную переменную.

Пример.

2 cos(3x – π/4) = -√2.

Решение.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Ответ: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Замена переменной

Схема решения

Шаг 1. Привести уравнение к алгебраическому виду относительно одной из тригонометрических функций.

Шаг 2. Обозначить полученную функцию переменной t (если необходимо, ввести ограничения на t).

Шаг 3. Записать и решить полученное алгебраическое уравнение.

Шаг 4. Сделать обратную замену.

Шаг 5. Решить простейшее тригонометрическое уравнение.

Пример.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Решение.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Пусть sin (x/2) = t, где |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 или е = -3/2, не удовлетворяет условию |t| ≤ 1.

4) sin (x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Ответ: x = π + 4πn, n Є Z.

III. Метод понижения порядка уравнения

Схема решения

Шаг 1. Заменить данное уравнение линейным, используя для этого формулы понижения степени:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Шаг 2. Решить полученное уравнение с помощью методов I и II.

Пример.

cos 2x + cos 2 x = 5/4.

Решение.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 · cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Ответ: x = ±π/6 + πn, n Є Z.

IV. Однородные уравнения

Схема решения

Шаг 1. Привести данное уравнение к виду

a) a sin x + b cos x = 0 (однородное уравнение первой степени)

или к виду

б) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (однородное уравнение второй степени).

Шаг 2. Разделить обе части уравнения на

а) cos x ≠ 0;

б) cos 2 x ≠ 0;

и получить уравнение относительно tg x:

а) a tg x + b = 0;

б) a tg 2 x + b arctg x + c = 0.

Шаг 3. Решить уравнение известными способами.

Пример.

5sin 2 x + 3sin x · cos x – 4 = 0.

Решение.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x – 4 = 0.

3) Пусть tg x = t, тогда

t 2 + 3t – 4 = 0;

t = 1 или t = -4, значит

tg x = 1 или tg x = -4.

Из первого уравнения x = π/4 + πn, n Є Z; из второго уравнения x = -arctg 4 + πk, k Є Z.

Ответ: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Метод преобразования уравнения с помощью тригонометрических формул

Схема решения

Шаг 1. Используя всевозможные тригонометрические формулы, привести данное уравнение к уравнению, решаемому методами I, II, III, IV.

Шаг 2. Решить полученное уравнение известными методами.

Пример.

sin x + sin 2x + sin 3x = 0.

Решение.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x · cos x + sin 2x = 0.

2) sin 2x · (2cos x + 1) = 0;

sin 2x = 0 или 2cos x + 1 = 0;

Из первого уравнения 2x = π/2 + πn, n Є Z; из второго уравнения cos x = -1/2.

Имеем х = π/4 + πn/2, n Є Z; из второго уравнения x = ±(π – π/3) + 2πk, k Є Z.

В итоге х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Ответ: х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Умения и навыки решать тригонометрические уравнения являются очень важными, их развитие требует значительных усилий, как со стороны ученика, так и со стороны учителя.

С решением тригонометрических уравнений связаны многие задачи стереометрии, физики, и др. Процесс решения таких задач как бы заключает в себе многие знания и умения, которые приобретаются при изучении элементов тригонометрии.

Тригонометрические уравнения занимают важное место в процессе обучения математики и развития личности в целом.

Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Краткое изложение теоретических вопросов дифференцированного зачета

Для студентов 1 курса

Специальности 23.02.03 «Техническое обслуживание и ремонт автомобильного транспорта»

Уравнение. Корень уравнения. Что значит «решить уравнение»?

Уравнение – это равенство, содержащее переменную.

Корень уравнения - такое значение переменной, которое при подстановке его в уравнение, обращает его в верное числовое равенство.

Решить уравнение – это значит найти все его корни или доказать, что корней нет.

Система уравнений – это совокупность из двух и более уравнений с двумя и более неизвестными; причём решение одного из уравнений является одновременно и решением всех остальных.

Виды уравнений и их решение: линейное, квадратное.

Линейные уравнения – это уравнения вида: ах + b = 0, где a и b – некоторые постоянные. Если а не равно нулю, то уравнение имеет один единственный корень: х = - b: а. Если а равно нулю и b равно нулю, то корнем уравнения ах + b = 0 является любое число. Если а равно нулю, а b не равно нулю, то уравнение ах + b = 0 не имеет корней.

Способы решения линейных уравнений

1) тождественные преобразования

2) графический способ.

Квадратное уравнение - это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c - произвольные числа, причем a ≠ 0.

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант - это число D = b 2 − 4ac .

1. Если D < 0, корней нет;

2. Если D = 0, есть ровно один корень;

3. Если D > 0, корней будет два.

Если дискриминант D > 0, корни можно найти по формулам: Корни квадратного уравнения. Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Решение простейших тригонометрических уравнений

Общий вид решения уравнения cos x = a, где | a | ≤ 1, определяется формулой:

x = ± arccos(a) + 2πk, k ∈ Z (целые числа), при | a | > 1 уравнение cos x = a не имеет решений среди вещественных чисел.

Общий вид решения уравнения sin x = a, где | a | ≤ 1, определяется формулой:



x = (- 1)k · arcsin(a) + πk, k ∈ Z (целые числа), при | a | > 1 уравнение sin x = a не имеет решений среди вещественных чисел.

Общий вид решения уравнения tg x = a определяется формулой:

x = arctg(a) + πk, k ∈ Z (целые числа).

Общий вид решения уравнения ctg x = a определяется формулой:

x = arcctg(a) + πk, k ∈ Z (целые числа).

Решение линейных тригонометрических уравнений

Линейные тригонометрические уравнения имеют вид k*f(x) + b = 0, где f(x) – тригонометрическая функция, а k и b - действительные числа.

Для решения уравнения его приводят к простейшему виду путем тождественных преобразований

Решение линейно – комбинированных тригонометрических уравнений

Линейно - комбинированные тригонометрические уравнения имеют вид f(kx + b) = а, где f(x) – тригонометрическая функция, а, k и b - действительные числа.

Для решения уравнения его вводят новую переменную у = kx + b. Решают полученное простейшее тригонометрическое уравнение относительно у и производят обратную замену.

Решение тригонометрических уравнений с использованием формул приведения

Решение тригонометрических уравнений с использованием тригонометрических тождеств

При решении тригонометрических уравнений, не являющихся простейшими, выполняются тождественные преобразования по следующим формулам:

Решение квадратных тригонометрических уравнений

Отличительные признаки уравнений, сводящихся к квадратным:

В уравнении присутствуют тригонометрические функции от одного аргумента или они легко сводятся к одному аргументу.

В уравнении присутствует только одна тригонометрическая функция или все функции можно свести к одной.

Алгоритм решения:

Выполняется подстановка.

Выполняется преобразование выражения.

Вводится обозначение (например, sinx = y).

Решается квадратное уравнение.

Подставляется значение обозначенной величины, и решается тригонометрическое уравнение